Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Investigating protein thiol chemistry associated with dehydroascorbate, homocysteine and glutathione using mass spectrometry.

Identifieur interne : 000056 ( Main/Exploration ); précédent : 000055; suivant : 000057

Investigating protein thiol chemistry associated with dehydroascorbate, homocysteine and glutathione using mass spectrometry.

Auteurs : Grace Kouakou Ahuie [Canada] ; Hugo Gagnon [Canada] ; Paul E. Pace [Nouvelle-Zélande] ; Alexander V. Peskin [Nouvelle-Zélande] ; Richard J. Wagner [Canada] ; Stephen Naylor [États-Unis] ; Klaus Klarskov [Canada]

Source :

RBID : pubmed:32119756

Abstract

RATIONALE

Oxidative stress is an imbalance between reactive free radical oxygen species and antioxidant defenses. Its consequences can lead to numerous pathologies. Regulating oxidative stress is the complex interplay between antioxidant recycling and thiol-containing regulatory proteins. Understanding these regulatory mechanisms is important for preventing onset of oxidative stress. The aim of this study was to investigae S-thiol protein chemistry associated with oxidized vitamin C (dehydroascorbate, DHA), homocysteine (HcySH) and glutathione (GSH) using mass spectrometry.

METHODS

Glutaredoxin-1 (Grx-1) was incubated with DHA, with and without GSH and HcySH. Disulfide formation was followed by electrospray ionization mass spectrometry (ESI-MS) of intact proteins and by LC/ESI-MS/MS of peptides from protein tryptic digestions. The mechanism of DHA-mediated S-thiolation was investigated using two synthetic peptides: AcFHACAAK and AcFHACE. Three proteins, i.e. human hemoglobin (HHb), recombinant peroxiredoxin 2 (Prdx2) and Grx-1, were S-homocysteinylated followed by S-transthiolyation with GSH and investigated by ESI-MS and ESI-MS/MS.

RESULTS

ESI-MS analysis reveals that DHA mediates disulfide formation and S-thiolation by HcySH as well as GSH of Grx-1. LC/ESI-MS/MS analysis allows identification of Grx-1 S-thiolated cysteine adducts. The mechanism by which DHA mediates S-thiolation of heptapeptide AcFHACAAK is shown to be via initial formation of a thiohemiketal adduct. In addition, ESI-MS of intact proteins shows that GSH can S-transthiolate S-homocysteinylated Grx-1_ HHb and Prdx2. The GS-S-protein adducts over time dominate the ESI-MS spectrum profile.

CONCLUSIONS

Mass spectrometry is a unique analytical technique for probing complex reaction mechanisms associated with oxidative stress. Using model proteins, ESI-MS reveals the mechanism of DHA-facilitated S-thiolation, which consists of thiohemiketal formation, disulfide formation or S-thiolation. Furthermore, protein S-thiolation by HcySH can be reversed by reversible GSH thiol exchange. The use of mass spectrometry with in vitro models of protein S-thiolation in oxidative stress may provide significant insight into possible mechanisms of action occurring in vivo.


DOI: 10.1002/rcm.8774
PubMed: 32119756


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Investigating protein thiol chemistry associated with dehydroascorbate, homocysteine and glutathione using mass spectrometry.</title>
<author>
<name sortKey="Ahuie, Grace Kouakou" sort="Ahuie, Grace Kouakou" uniqKey="Ahuie G" first="Grace Kouakou" last="Ahuie">Grace Kouakou Ahuie</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4</wicri:regionArea>
<wicri:noRegion>J1H 5N4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gagnon, Hugo" sort="Gagnon, Hugo" uniqKey="Gagnon H" first="Hugo" last="Gagnon">Hugo Gagnon</name>
<affiliation wicri:level="1">
<nlm:affiliation>PhenoSwitch Bioscience, 975 Rue Léon-Trépanier, Sherbrooke, Quebec, J1G 5J6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>PhenoSwitch Bioscience, 975 Rue Léon-Trépanier, Sherbrooke, Quebec, J1G 5J6</wicri:regionArea>
<wicri:noRegion>J1G 5J6</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pace, Paul E" sort="Pace, Paul E" uniqKey="Pace P" first="Paul E" last="Pace">Paul E. Pace</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8140, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8140</wicri:regionArea>
<wicri:noRegion>8140</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Peskin, Alexander V" sort="Peskin, Alexander V" uniqKey="Peskin A" first="Alexander V" last="Peskin">Alexander V. Peskin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8140, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8140</wicri:regionArea>
<wicri:noRegion>8140</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wagner, Richard J" sort="Wagner, Richard J" uniqKey="Wagner R" first="Richard J" last="Wagner">Richard J. Wagner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4</wicri:regionArea>
<wicri:noRegion>J1H 5N4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Naylor, Stephen" sort="Naylor, Stephen" uniqKey="Naylor S" first="Stephen" last="Naylor">Stephen Naylor</name>
<affiliation wicri:level="1">
<nlm:affiliation>ReNeuroGen LLC, 2160 San Fernando Drive, Elm Grove, WI, 53122, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>ReNeuroGen LLC, 2160 San Fernando Drive, Elm Grove, WI, 53122</wicri:regionArea>
<wicri:noRegion>53122</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Klarskov, Klaus" sort="Klarskov, Klaus" uniqKey="Klarskov K" first="Klaus" last="Klarskov">Klaus Klarskov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4</wicri:regionArea>
<wicri:noRegion>J1H 5N4</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32119756</idno>
<idno type="pmid">32119756</idno>
<idno type="doi">10.1002/rcm.8774</idno>
<idno type="wicri:Area/Main/Corpus">000077</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000077</idno>
<idno type="wicri:Area/Main/Curation">000077</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000077</idno>
<idno type="wicri:Area/Main/Exploration">000077</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Investigating protein thiol chemistry associated with dehydroascorbate, homocysteine and glutathione using mass spectrometry.</title>
<author>
<name sortKey="Ahuie, Grace Kouakou" sort="Ahuie, Grace Kouakou" uniqKey="Ahuie G" first="Grace Kouakou" last="Ahuie">Grace Kouakou Ahuie</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4</wicri:regionArea>
<wicri:noRegion>J1H 5N4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gagnon, Hugo" sort="Gagnon, Hugo" uniqKey="Gagnon H" first="Hugo" last="Gagnon">Hugo Gagnon</name>
<affiliation wicri:level="1">
<nlm:affiliation>PhenoSwitch Bioscience, 975 Rue Léon-Trépanier, Sherbrooke, Quebec, J1G 5J6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>PhenoSwitch Bioscience, 975 Rue Léon-Trépanier, Sherbrooke, Quebec, J1G 5J6</wicri:regionArea>
<wicri:noRegion>J1G 5J6</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pace, Paul E" sort="Pace, Paul E" uniqKey="Pace P" first="Paul E" last="Pace">Paul E. Pace</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8140, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8140</wicri:regionArea>
<wicri:noRegion>8140</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Peskin, Alexander V" sort="Peskin, Alexander V" uniqKey="Peskin A" first="Alexander V" last="Peskin">Alexander V. Peskin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8140, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8140</wicri:regionArea>
<wicri:noRegion>8140</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wagner, Richard J" sort="Wagner, Richard J" uniqKey="Wagner R" first="Richard J" last="Wagner">Richard J. Wagner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4</wicri:regionArea>
<wicri:noRegion>J1H 5N4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Naylor, Stephen" sort="Naylor, Stephen" uniqKey="Naylor S" first="Stephen" last="Naylor">Stephen Naylor</name>
<affiliation wicri:level="1">
<nlm:affiliation>ReNeuroGen LLC, 2160 San Fernando Drive, Elm Grove, WI, 53122, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>ReNeuroGen LLC, 2160 San Fernando Drive, Elm Grove, WI, 53122</wicri:regionArea>
<wicri:noRegion>53122</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Klarskov, Klaus" sort="Klarskov, Klaus" uniqKey="Klarskov K" first="Klaus" last="Klarskov">Klaus Klarskov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4</wicri:regionArea>
<wicri:noRegion>J1H 5N4</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Rapid communications in mass spectrometry : RCM</title>
<idno type="eISSN">1097-0231</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>RATIONALE</b>
</p>
<p>Oxidative stress is an imbalance between reactive free radical oxygen species and antioxidant defenses. Its consequences can lead to numerous pathologies. Regulating oxidative stress is the complex interplay between antioxidant recycling and thiol-containing regulatory proteins. Understanding these regulatory mechanisms is important for preventing onset of oxidative stress. The aim of this study was to investigae S-thiol protein chemistry associated with oxidized vitamin C (dehydroascorbate, DHA), homocysteine (HcySH) and glutathione (GSH) using mass spectrometry.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>Glutaredoxin-1 (Grx-1) was incubated with DHA, with and without GSH and HcySH. Disulfide formation was followed by electrospray ionization mass spectrometry (ESI-MS) of intact proteins and by LC/ESI-MS/MS of peptides from protein tryptic digestions. The mechanism of DHA-mediated S-thiolation was investigated using two synthetic peptides: AcFHACAAK and AcFHACE. Three proteins, i.e. human hemoglobin (HHb), recombinant peroxiredoxin 2 (Prdx2) and Grx-1, were S-homocysteinylated followed by S-transthiolyation with GSH and investigated by ESI-MS and ESI-MS/MS.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>ESI-MS analysis reveals that DHA mediates disulfide formation and S-thiolation by HcySH as well as GSH of Grx-1. LC/ESI-MS/MS analysis allows identification of Grx-1 S-thiolated cysteine adducts. The mechanism by which DHA mediates S-thiolation of heptapeptide AcFHACAAK is shown to be via initial formation of a thiohemiketal adduct. In addition, ESI-MS of intact proteins shows that GSH can S-transthiolate S-homocysteinylated Grx-1_ HHb and Prdx2. The GS-S-protein adducts over time dominate the ESI-MS spectrum profile.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Mass spectrometry is a unique analytical technique for probing complex reaction mechanisms associated with oxidative stress. Using model proteins, ESI-MS reveals the mechanism of DHA-facilitated S-thiolation, which consists of thiohemiketal formation, disulfide formation or S-thiolation. Furthermore, protein S-thiolation by HcySH can be reversed by reversible GSH thiol exchange. The use of mass spectrometry with in vitro models of protein S-thiolation in oxidative stress may provide significant insight into possible mechanisms of action occurring in vivo.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32119756</PMID>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1097-0231</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jun</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Rapid communications in mass spectrometry : RCM</Title>
<ISOAbbreviation>Rapid Commun Mass Spectrom</ISOAbbreviation>
</Journal>
<ArticleTitle>Investigating protein thiol chemistry associated with dehydroascorbate, homocysteine and glutathione using mass spectrometry.</ArticleTitle>
<Pagination>
<MedlinePgn>e8774</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/rcm.8774</ELocationID>
<Abstract>
<AbstractText Label="RATIONALE" NlmCategory="BACKGROUND">Oxidative stress is an imbalance between reactive free radical oxygen species and antioxidant defenses. Its consequences can lead to numerous pathologies. Regulating oxidative stress is the complex interplay between antioxidant recycling and thiol-containing regulatory proteins. Understanding these regulatory mechanisms is important for preventing onset of oxidative stress. The aim of this study was to investigae S-thiol protein chemistry associated with oxidized vitamin C (dehydroascorbate, DHA), homocysteine (HcySH) and glutathione (GSH) using mass spectrometry.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">Glutaredoxin-1 (Grx-1) was incubated with DHA, with and without GSH and HcySH. Disulfide formation was followed by electrospray ionization mass spectrometry (ESI-MS) of intact proteins and by LC/ESI-MS/MS of peptides from protein tryptic digestions. The mechanism of DHA-mediated S-thiolation was investigated using two synthetic peptides: AcFHACAAK and AcFHACE. Three proteins, i.e. human hemoglobin (HHb), recombinant peroxiredoxin 2 (Prdx2) and Grx-1, were S-homocysteinylated followed by S-transthiolyation with GSH and investigated by ESI-MS and ESI-MS/MS.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">ESI-MS analysis reveals that DHA mediates disulfide formation and S-thiolation by HcySH as well as GSH of Grx-1. LC/ESI-MS/MS analysis allows identification of Grx-1 S-thiolated cysteine adducts. The mechanism by which DHA mediates S-thiolation of heptapeptide AcFHACAAK is shown to be via initial formation of a thiohemiketal adduct. In addition, ESI-MS of intact proteins shows that GSH can S-transthiolate S-homocysteinylated Grx-1_ HHb and Prdx2. The GS-S-protein adducts over time dominate the ESI-MS spectrum profile.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Mass spectrometry is a unique analytical technique for probing complex reaction mechanisms associated with oxidative stress. Using model proteins, ESI-MS reveals the mechanism of DHA-facilitated S-thiolation, which consists of thiohemiketal formation, disulfide formation or S-thiolation. Furthermore, protein S-thiolation by HcySH can be reversed by reversible GSH thiol exchange. The use of mass spectrometry with in vitro models of protein S-thiolation in oxidative stress may provide significant insight into possible mechanisms of action occurring in vivo.</AbstractText>
<CopyrightInformation>© 2020 John Wiley & Sons, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ahuie</LastName>
<ForeName>Grace Kouakou</ForeName>
<Initials>GK</Initials>
<AffiliationInfo>
<Affiliation>Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gagnon</LastName>
<ForeName>Hugo</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>PhenoSwitch Bioscience, 975 Rue Léon-Trépanier, Sherbrooke, Quebec, J1G 5J6, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pace</LastName>
<ForeName>Paul E</ForeName>
<Initials>PE</Initials>
<AffiliationInfo>
<Affiliation>Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8140, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peskin</LastName>
<ForeName>Alexander V</ForeName>
<Initials>AV</Initials>
<AffiliationInfo>
<Affiliation>Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8140, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wagner</LastName>
<ForeName>Richard J</ForeName>
<Initials>RJ</Initials>
<AffiliationInfo>
<Affiliation>Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Naylor</LastName>
<ForeName>Stephen</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-7619-6044</Identifier>
<AffiliationInfo>
<Affiliation>ReNeuroGen LLC, 2160 San Fernando Drive, Elm Grove, WI, 53122, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Klarskov</LastName>
<ForeName>Klaus</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-7574-7537</Identifier>
<AffiliationInfo>
<Affiliation>Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Rapid Commun Mass Spectrom</MedlineTA>
<NlmUniqueID>8802365</NlmUniqueID>
<ISSNLinking>0951-4198</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32119756</ArticleId>
<ArticleId IdType="doi">10.1002/rcm.8774</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Govindpani K, McNamara LG, Smith NR, et al. Vascular dysfunction in Alzheimer's disease: A prelude to the pathological process or a consequence of it? J Clin Med. 2019;8(5): E651. https://doi.org/10.3390/jcm8050651</Citation>
</Reference>
<Reference>
<Citation>Vaamonde-García C, López-Armada MJ. Role of mitochondrial dysfunction on rheumatic diseases. Biochem Pharmacol. 2019;165:181-195. https://doi.org/10.1016/j.bcp.2019.03.008</Citation>
</Reference>
<Reference>
<Citation>Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A. Mechanisms of vascular aging. Circ Res. 2018;123(7):849-867. https://doi.org/10.1161/CIRCRESAHA.118.311378</Citation>
</Reference>
<Reference>
<Citation>Janssen YM, Van Houten B, Borm PJ, Mossman BT. Cell and tissue responses to oxidative damage. Lab Investig J Tech Methods Pathol. 1993;69(3):261-274.</Citation>
</Reference>
<Reference>
<Citation>Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. J Park Dis. 2013;3(4):461-491. https://doi.org/10.3233/JPD-130230</Citation>
</Reference>
<Reference>
<Citation>Xiao Z, La Fontaine S, Bush AI, Wedd AG. Molecular mechanisms of glutaredoxin enzymes: Versatile hubs for thiol-disulfide exchange between protein thiols and glutathione. J Mol Biol. 2019;431(2):158-177. https://doi.org/10.1016/j.jmb.2018.12.006</Citation>
</Reference>
<Reference>
<Citation>Ryu EJ, Kim DW, Shin MJ, et al. PEP-1-glutaredoxin 1 protects against hippocampal neuronal cell damage from oxidative stress via regulation of MAPK and apoptotic signaling pathways. Mol Med Rep. 2018;18(2):2216-2228. https://doi.org/10.3892/mmr.2018.9176</Citation>
</Reference>
<Reference>
<Citation>Wells WW, Xu DP, Yang Y, Rocque PA. Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem. 1990;265(26):15361-15364.</Citation>
</Reference>
<Reference>
<Citation>May JM, Qu ZC, Whitesell RR, Cobb CE. Ascorbate recycling in human erythrocytes: Role of GSH in reducing dehydroascorbate. Free Radical Biol Med. 1996;20(4):543-551.</Citation>
</Reference>
<Reference>
<Citation>Hughes RE. The use of homocysteine in the estimation of dehydroascorbic acid. Biochem J. 1956;64(1):203-208. https://doi.org/10.1042/bj0640203</Citation>
</Reference>
<Reference>
<Citation>Park JB. Reduction of dehydroascorbic acid by homocysteine. Biochim Biophys Acta. 2001;1525(1-2):173-179.</Citation>
</Reference>
<Reference>
<Citation>Washburn MP, Wells WW. The catalytic mechanism of the glutathione-dependent dehydroascorbate reductase activity of thioltransferase (glutaredoxin). Biochemistry. 1999;38(1):268-274. https://doi.org/10.1021/bi980480v</Citation>
</Reference>
<Reference>
<Citation>Park JB, Levine M. Purification, cloning and expression of dehydroascorbic acid-reducing activity from human neutrophils: Identification as glutaredoxin. Biochem J. 1996;315(Pt 3):931-938.</Citation>
</Reference>
<Reference>
<Citation>May JM, Mendiratta S, Hill KE, Burk RF. Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J Biol Chem. 1997;272(36):22607-22610.</Citation>
</Reference>
<Reference>
<Citation>Janssen-Heininger YMW, Nolin JD, Hoffman SM, et al. Emerging mechanisms of glutathione-dependent chemistry in biology and disease. J Cell Biochem. 2013;114(9):1962-1968. https://doi.org/10.1002/jcb.24551</Citation>
</Reference>
<Reference>
<Citation>Gorini G, Gamberi T, Fiaschi T, Mannelli M, Modesti A, Magherini F. Irreversible plasma and muscle protein oxidation and physical exercise. Free Radical Res. 2019;53(2):126-138. https://doi.org/10.1080/10715762.2018.1542141</Citation>
</Reference>
<Reference>
<Citation>Yang M-L, Doyle HA, Clarke SG, Herold KC, Mamula MJ. Oxidative modifications in tissue pathology and autoimmune disease. Antioxid Redox Signal. 2018;29(14):1415-1431. https://doi.org/10.1089/ars.2017.7382</Citation>
</Reference>
<Reference>
<Citation>McDonagh B. Detection of ROS induced proteomic signatures by mass spectrometry. Front Physiol. 2017;8:1-7. https://doi.org/10.3389/fphys.2017.00470</Citation>
</Reference>
<Reference>
<Citation>Ying J, Clavreul N, Sethuraman M, Adachi T, Cohen RA. Thiol oxidation in signaling and response to stress: Detection and quantification of physiological and pathophysiological thiol modifications. Free Radical Biol Med. 2007;43(8):1099-1108. https://doi.org/10.1016/j.freeradbiomed.2007.07.014</Citation>
</Reference>
<Reference>
<Citation>Fu L, Liu K, Ferreira RB, Carroll KS, Yang J. Proteome-wide analysis of cysteine S-sulfenylation using a benzothiazine-based probe. Curr Protocols Protein Sci. 2019;95(1): e76. https://doi.org/10.1002/cpps.76</Citation>
</Reference>
<Reference>
<Citation>Albertolle ME, Phan TTN, Pozzi A, Guengerich FP. Sulfenylation of human liver and kidney microsomal cytochromes P450 and other drug-metabolizing enzymes as a response to redox alteration. Mol Cell Proteomics. 2018;17(5):889-900. https://doi.org/10.1074/mcp.RA117.000382</Citation>
</Reference>
<Reference>
<Citation>Yang J, Gupta V, Tallman KA, Porter NA, Carroll KS, Liebler DC. Global, in situ, site-specific analysis of protein S-sulfenylation. Nat Protocols. 2015;10(7):1022-1037. https://doi.org/10.1038/nprot.2015.062</Citation>
</Reference>
<Reference>
<Citation>Sharar M, Saied EM, Rodriguez MC, Arenz C, Montes-Bayón M, Linscheid MW. Elemental labelling and mass spectrometry for the specific detection of sulfenic acid groups in model peptides: A proof of concept. Anal Bioanal Chem. 2017;409(8):2015-2027. https://doi.org/10.1007/s00216-016-0149-x</Citation>
</Reference>
<Reference>
<Citation>Doerr A. Finding S-sulfinylated proteins. Nat Methods. 2018;15(11):859-859. https://doi.org/10.1038/s41592-018-0200-2</Citation>
</Reference>
<Reference>
<Citation>Gu L, Robinson RAS. A simple isotopic labeling method to study cysteine oxidation in Alzheimer's disease: Oxidized cysteine-selective dimethylation (OxcysDML). Anal Bioanal Chem. 2016;408(11):2993-3004. https://doi.org/10.1007/s00216-016-9307-4</Citation>
</Reference>
<Reference>
<Citation>Ishida Y, Aki M, Fujiwara S, Nagahama M, Ogasawara Y. Peroxidatic cysteine residue of peroxiredoxin 2 separated from human red blood cells treated by tert-butyl hydroperoxide is hyperoxidized into sulfinic and sulfonic acids. Hum Cell. 2017;30(4):279-289. https://doi.org/10.1007/s13577-017-0171-0</Citation>
</Reference>
<Reference>
<Citation>Ma T, Yoo M-J, Zhang T, et al. Characterization of thiol-based redox modifications of Brassica napus SNF1-related protein kinase 2.6-2C. FEBS Open Bio. 2018;8(4):628-645. https://doi.org/10.1002/2211-5463.12401</Citation>
</Reference>
<Reference>
<Citation>Tsuji K, Yoon K-S, Ogo S. Glyceraldehyde-3-phosphate dehydrogenase from Citrobacter sp. S-77 is post-translationally modified by CoA (protein CoAlation) under oxidative stress. FEBS Open Bio. 2019;9(1):53-73. https://doi.org/10.1002/2211-5463.12542</Citation>
</Reference>
<Reference>
<Citation>Lee D-Y, Huang W-C, Gu T-J, Chang G-D. Quantitative and comparative liquid chromatography-electrospray ionization-mass spectrometry analyses of hydrogen sulfide and thiol metabolites derivatized with 2-iodoacetanilide isotopologues. J Chromatogr A. 2018;1552:43-52. https://doi.org/10.1016/j.chroma.2018.04.008</Citation>
</Reference>
<Reference>
<Citation>Heppner DE, Hristova M, Ida T, et al. Cysteine perthiosulfenic acid (Cys-SSOH): A novel intermediate in thiol-based redox signaling? Redox Biol. 2018;14:379-385. https://doi.org/10.1016/j.redox.2017.10.006</Citation>
</Reference>
<Reference>
<Citation>Dyer RR, Gu L, Robinson RAS. S-Nitrosylation in Alzheimer's disease using oxidized cysteine-selective cPILOT. In: Santamaría E, Fernández-Irigoyen J, eds. Current Proteomic Approaches Applied to Brain Function. Neuromethods. Vol.127 New York, NY: Humana Press; 2017:225-241 https://doi.org/10.1007/978-1-4939-7119-0_14.</Citation>
</Reference>
<Reference>
<Citation>Chung HS, Murray CI, Van Eyk JE. A proteomics workflow for dual labeling biotin switch assay to detect and quantify protein S-nitroylation. In: Mengel A, Lindermayr C, eds. Nitric Oxide. Methods in Molecular Biology. Vol.1747 New York, NY: Humana Press; 2018:89-101 https://doi.org/10.1007/978-1-4939-7695-9_8.</Citation>
</Reference>
<Reference>
<Citation>Qu Z, Greenlief CM, Gu Z. Quantitative proteomic approaches for analysis of protein S-nitrosylation. J Proteome Res. 2016;15(1):1-14. https://doi.org/10.1021/acs.jproteome.5b00857</Citation>
</Reference>
<Reference>
<Citation>Doulias P-T, Gould NS. Analysis of cysteine post translational modifications using organic mercury resin. Curr Protocols Protein Sci. 2018;94(1): e69. https://doi.org/10.1002/cpps.69</Citation>
</Reference>
<Reference>
<Citation>Auclair JR, Salisbury JP, Johnson JL, et al. Artifacts to avoid while taking advantage of top-down mass spectrometry based detection of protein S-thiolation. Proteomics. 2014;14(10):1152-1157. https://doi.org/10.1002/pmic.201300450</Citation>
</Reference>
<Reference>
<Citation>Ansong C, Wu S, Meng D, et al. Top-down proteomics reveals a unique protein S-thiolation switch in Salmonella typhimurium in response to infection-like conditions. Proc Natl Acad Sci. 2013;110(25):10153-10158. https://doi.org/10.1073/pnas.1221210110</Citation>
</Reference>
<Reference>
<Citation>VanHecke GC, Abeywardana MY, Ahn Y-H. Proteomic identification of protein glutathionylation in cardiomyocytes. J Proteome Res. 2019;18(4):1806-1818. https://doi.org/10.1021/acs.jproteome.8b00986</Citation>
</Reference>
<Reference>
<Citation>Srivastava D, Kukkuta Sarma GR, Dsouza DS, Muralidharan M, Srinivasan K, Mandal AK. Characterization of residue-specific glutathionylation of CSF proteins in multiple sclerosis - A MS-based approach. Anal Biochem. 2019;564-565:108-115. https://doi.org/10.1016/j.ab.2018.10.015</Citation>
</Reference>
<Reference>
<Citation>Nagarkoti S, Dubey M, Awasthi D, et al. S-Glutathionylation of p47phox sustains superoxide generation in activated neutrophils. Biochim Biophys Acta. 2018;1865(2):444-454. https://doi.org/10.1016/j.bbamcr.2017.11.014</Citation>
</Reference>
<Reference>
<Citation>Lim A, Prokaeva T, McComb ME, Connors LH, Skinner M, Costello CE. Identification of S-sulfonation and S-thiolation of a novel transthyretin Phe33Cys variant from a patient diagnosed with familial transthyretin amyloidosis. Protein Sci Publ Protein Soc. 2003;12(8):1775-1785. https://doi.org/10.1110/ps.0349703</Citation>
</Reference>
<Reference>
<Citation>Sass JO, Nakanishi T, Sato T, Sperl W, Shimizu A. S-Homocysteinylation of transthyretin is detected in plasma and serum of humans with different types of hyperhomocysteinemia. Biochem Biophys Res Commun. 2003;310(1):242-246. https://doi.org/10.1016/j.bbrc.2003.08.089</Citation>
</Reference>
<Reference>
<Citation>Riquier S, Breton J, Abbas K, Cornu D, Bouton C, Drapier J-C. Peroxiredoxin post-translational modifications by redox messengers. Redox Biol. 2014;2:777-785. https://doi.org/10.1016/j.redox.2014.06.001</Citation>
</Reference>
<Reference>
<Citation>Peskin AV, Pace PE, Behring JB, et al. Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutaredoxin. J Biol Chem. 2016;291(6):3053-3062. https://doi.org/10.1074/jbc.M115.692798</Citation>
</Reference>
<Reference>
<Citation>Bode AM, Cunningham L, Rose RC. Spontaneous decay of oxidized ascorbic acid (dehydro-L-ascorbic acid) evaluated by high-pressure liquid chromatography. Clin Chem. 1990;36(10):1807-1809.</Citation>
</Reference>
<Reference>
<Citation>Regulus P, Desilets J-F, Klarskov K, Wagner JR. Characterization and detection in cells of a novel adduct derived from the conjugation of glutathione and dehydroascorbate. Free Radic Biol Med. 2010;49(6):984-991. https://doi.org/10.1016/j.freeradbiomed.2010.05.029</Citation>
</Reference>
<Reference>
<Citation>Pastore P, Rizzetto T, Curcuruto O, Cin MD, Zaramella A, Marton D. Characterization of dehydroascorbic acid solutions by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2001;15(22):2051-2057. https://doi.org/10.1002/rcm.476</Citation>
</Reference>
<Reference>
<Citation>Saaranen MJ, Karala A-R, Lappi A-K, Ruddock LW. The role of dehydroascorbate in disulfide bond formation. Antioxid Redox Signal. 2010;12(1):15-25. https://doi.org/10.1089/ars.2009.2674</Citation>
</Reference>
<Reference>
<Citation>Ukuwela AA, Bush AI, Wedd AG, Xiao Z. Reduction potentials of protein disulfides and catalysis of glutathionylation and deglutathionylation by glutaredoxin enzymes. Biochem J. 2017;474(22):3799-3815. https://doi.org/10.1042/BCJ20170589</Citation>
</Reference>
<Reference>
<Citation>Netto LES, de Oliveira MA, Tairum CA, da Silva Neto JF. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions. Free Radic Res. 2016;50(2):206-245. https://doi.org/10.3109/10715762.2015.1120864</Citation>
</Reference>
<Reference>
<Citation>Ahuié Kouakou G, Gagnon H, Lacasse V, Wagner JR, Naylor S, Klarskov K. Dehydroascorbic acid S-thiolation of peptides and proteins: Role of homocysteine and glutathione. Free Radic Biol Med. 2019;141:233-243. https://doi.org/10.1016/j.freeradbiomed.2019.06.022</Citation>
</Reference>
<Reference>
<Citation>Ehrhart J, Zeevalk GD. Cooperative interaction between ascorbate and glutathione during mitochondrial impairment in mesencephalic cultures. J Neurochem. 2003;86(6):1487-1497. https://doi.org/10.1046/j.1471-4159.2003.01954.x</Citation>
</Reference>
<Reference>
<Citation>Halliwell B. Artefacts with ascorbate and other redox-active compounds in cell culture: Epigenetic modifications, and cell killing due to hydrogen peroxide generation in cell culture media. Free Radic Res. 2018;52(9):907-909. https://doi.org/10.1080/10715762.2018.1512749</Citation>
</Reference>
<Reference>
<Citation>Yun J, Mullarky E, Lu C, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science. 2015;350(6266):1391-1396. https://doi.org/10.1126/science.aaa5004</Citation>
</Reference>
<Reference>
<Citation>Corti A, Casini AF, Pompella A. Cellular pathways for transport and efflux of ascorbate and dehydroascorbate. Arch Biochem Biophys. 2010;500(2):107-115. https://doi.org/10.1016/j.abb.2010.05.014</Citation>
</Reference>
<Reference>
<Citation>Castro M, Caprile T, Astuya A, et al. High-affinity sodium-vitamin C co-transporters (SVCT) expression in embryonic mouse neurons. J Neurochem. 2001;78(4):815-823. https://doi.org/10.1046/j.1471-4159.2001.00461.x</Citation>
</Reference>
<Reference>
<Citation>Fagerquist CK. Collision-activated cleavage of a peptide/antibiotic disulfide linkage: Possible evidence for intramolecular disulfide bond rearrangement upon collisional activation. Rapid Commun Mass Spectrom. 2004;18(6):685-700. https://doi.org/10.1002/rcm.1390</Citation>
</Reference>
<Reference>
<Citation>Xie C, Zhong D, Chen X. A fragmentation-based method for the differentiation of glutathione conjugates by high-resolution mass spectrometry with electrospray ionization. Anal Chim Acta. 2013;788:89-98. https://doi.org/10.1016/j.aca.2013.06.022</Citation>
</Reference>
<Reference>
<Citation>Parmar KR, Jhajra S, Singh S. Detection of glutathione conjugates of amiodarone and its reactive diquinone metabolites in rat bile using mass spectrometry tools. Rapid Commun Mass Spectrom. 2016;30(10):1242-1248. https://doi.org/10.1002/rcm.7545</Citation>
</Reference>
<Reference>
<Citation>Wang W, Ballatori N. Endogenous glutathione conjugates: Occurrence and biological functions. Pharmacol Rev. 1998;50(3):335-356.</Citation>
</Reference>
<Reference>
<Citation>Kesinger NG, Stevens JF. Covalent interaction of ascorbic acid with natural products. Phytochemistry. 2009;70(17-18):1930-1939. https://doi.org/10.1016/j.phytochem.2009.09.028</Citation>
</Reference>
<Reference>
<Citation>Yang F, Yi M, Liu Y, Wang Q, Hu Y, Deng H. Glutaredoxin-1 silencing induces cell senescence via p53/p21/p16 signaling axis. J Proteome Res. 2018;17(3):1091-1100. https://doi.org/10.1021/acs.jproteome.7b00761</Citation>
</Reference>
<Reference>
<Citation>Chen H-JC, Chen Y-C. Reactive nitrogen oxide species-induced post-translational modifications in human hemoglobin and the association with cigarette smoking. Anal Chem. 2012;84(18):7881-7890. https://doi.org/10.1021/ac301597r</Citation>
</Reference>
<Reference>
<Citation>Brennan SO, King RI, Florkowski CM. β37Trp→Cys mutation leads to multiple new hemoglobin species in red cells. Clin Biochem. 2012;45(3):259-263. https://doi.org/10.1016/j.clinbiochem.2011.12.001</Citation>
</Reference>
<Reference>
<Citation>Wither M, Dzieciatkowska M, Nemkov T, Strop P, D'Alessandro A, Hansen KC. Hemoglobin oxidation at functional amino acid residues during routine storage of red blood cells. Transfusion (Paris). 2016;56(2):421-426. https://doi.org/10.1111/trf.13363</Citation>
</Reference>
<Reference>
<Citation>Nagababu E, Mohanty JG, Friedman JS, Rifkind JM. Role of peroxiredoxin-2 in protecting RBCs from hydrogen peroxide-induced oxidative stress. Free Radical Res. 2013;47(3):164-171. https://doi.org/10.3109/10715762.2012.756138</Citation>
</Reference>
<Reference>
<Citation>Low FM, Hampton MB, Peskin AV, Winterbourn CC. Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte. Blood. 2007;109(6):2611-2617. https://doi.org/10.1182/blood-2006-09-048728</Citation>
</Reference>
<Reference>
<Citation>Glushchenko AV, Jacobsen DW. Molecular targeting of proteins by L-homocysteine: Mechanistic implications for vascular disease. Antioxid Redox Signal. 2007;9(11):1883-1898. https://doi.org/10.1089/ars.2007.1809</Citation>
</Reference>
<Reference>
<Citation>Priora R, Coppo L, Margaritis A, et al. The control of S-thiolation by cysteine via gamma-glutamyltranspeptidase and thiol exchanges in erythrocytes and plasma of diamide-treated rats. Toxicol Appl Pharmacol. 2010;242(3):333-343. https://doi.org/10.1016/j.taap.2009.11.003</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>Nouvelle-Zélande</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Ahuie, Grace Kouakou" sort="Ahuie, Grace Kouakou" uniqKey="Ahuie G" first="Grace Kouakou" last="Ahuie">Grace Kouakou Ahuie</name>
</noRegion>
<name sortKey="Gagnon, Hugo" sort="Gagnon, Hugo" uniqKey="Gagnon H" first="Hugo" last="Gagnon">Hugo Gagnon</name>
<name sortKey="Klarskov, Klaus" sort="Klarskov, Klaus" uniqKey="Klarskov K" first="Klaus" last="Klarskov">Klaus Klarskov</name>
<name sortKey="Wagner, Richard J" sort="Wagner, Richard J" uniqKey="Wagner R" first="Richard J" last="Wagner">Richard J. Wagner</name>
</country>
<country name="Nouvelle-Zélande">
<noRegion>
<name sortKey="Pace, Paul E" sort="Pace, Paul E" uniqKey="Pace P" first="Paul E" last="Pace">Paul E. Pace</name>
</noRegion>
<name sortKey="Peskin, Alexander V" sort="Peskin, Alexander V" uniqKey="Peskin A" first="Alexander V" last="Peskin">Alexander V. Peskin</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Naylor, Stephen" sort="Naylor, Stephen" uniqKey="Naylor S" first="Stephen" last="Naylor">Stephen Naylor</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000056 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000056 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32119756
   |texte=   Investigating protein thiol chemistry associated with dehydroascorbate, homocysteine and glutathione using mass spectrometry.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32119756" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020